Decimal: 0,1,2,3,4,5,6,7,8,9
Binario: 0,1
Octal: 0,1,2,3,4,5,6,7
Hexadecimal: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
|
|
|
Conversión de un número entero del sistema numérico decimal al sistema de binario.
Seguidamente realizaremos la operación inversa, es decir, convertir un número perteneciente al sistema numérico decimal (base 10) a un número binario (base 2). Utilizamos primero el mismo número 189 como dividendo y el 2, correspondiente a la base numérica binaria del número que queremos hallar, como divisor. A continuación el resultado o cociente obtenido de esa división (94 en este caso), lo dividimos de nuevo por 2 y así, continuaremos haciendo sucesivamente con cada cociente que obtengamos, hasta que ya sea imposible continuar dividiendo. Veamos el ejemplo: |
![]() |
Una vez terminada la operación, escribimos los números correspondientes a los residuos de cada división en orden inverso, o sea, haciéndolo de abajo hacia arriba. De esa forma obtendremos el número binario, cuyo valor equivale a 189, que en este caso será: 101111012 . |
Conversión de Decimal a Hexadecimal
En la conversión de una magnitud decimal a hexadecimal se realizan divisiones sucesivas por 16 hasta obtener un cociente de cero. Los residuos forman el número hexadecimal equivalente, siendo el último residuo el dígito más significativo y el primero el menos significativo.
EjemploConvertir el número 186910 a hexadecimal.

Figura 1.2.2. Ejemplo de Conversión de decimal a hexadecimal
El resultado en hexadecimal de 186910 es 74D16.Conversión de Decimal a Octal
En la conversión de una magnitud decimal a octal se realizan divisiones sucesivas por 8 hasta obtener la parte entera del cociente igual a cero. Los residuos forman el número octal equivalente, siendo el último residuo el dígito más significativo y el primero el menos significativo.
EjemploConvertir el número 46510 a octal.
Número N | N ÷ 8 | Parte decimal | Parte decimal x 8 | Peso |
---|---|---|---|---|
465 | 58,125 | 0,125 | 1 | LSB |
58 | 7,25 | 0,25 | 2 | |
0,5 | 0,875 | 0,875 | 7 | MSB |
Conversión de Binario a Decimal
Un número binario se convierte a decimal formando la suma de las potencias de base 2 de los coeficientes cuyo valor sea 1 (ver lección 1).
Ejemplo
Convertir el número 11002 a decimal.
11002 = 1x23 + 1x22 = 1210
Conversión de Binario a Hexadecimal
El método consiste en conformar grupos de 4 bits hacia la izquierda y hacia la derecha del punto que indica las fracciones, hasta cubrir la totalidad del número binario. Enseguida se convierte cada grupo de número binario de 4 bits a su equivalente hexadecimal.
EjemploConvertir el número 10011101010 a hexadecimal.

Conversión de Binario a Octal
Ejemplo
Convertir el número 010101012 a octal.

Conversión de Hexadecimal a Decimal
En el sistema hexadecimal, cada dígito tiene asociado un peso equivalente a una potencia de 16, entonces se multiplica el valor decimal del dígito correspondiente por el respectivo peso y realizar la suma de los productos.
EjemploConvertir el número 31F16 a decimal.
31F16 = 3x162 + 1x16 + 15 x 160 = 3x256 + 16 + 15 = 768 + 31 = 79910
Conversión de Hexadecimal a Binario
Ejemplo
Convertir el número 1F0C16 a binario.
1F0C16 = 11111000011002
Conversión de Octal a Decimal
Ejemplo
Convertir 47808 a decimal.
4780 = (4 x 83)+(3x82)+(8x81)+(0x80) = 2048+192+64+0= 2304
Conversión de Octal a Binario
Ejemplo
Convertir el número 7158 a binario.
7158 = (111001101)2
Operaciones con números binarios
Suma de números binarios
La tabla de sumar para números binarios es la siguiente:+ | 0 | 1 |
---|---|---|
0 | 0 | 1 |
1 | 1 | 10 |
- 0 + 0 = 0
- 0 + 1 = 1
- 1 + 0 = 1
- 1 + 1 = 10
- Ejemplo
1 10011000 + 00010101 ——————————— 10101101
Se puede convertir la operación binaria en una operación decimal, resolver la decimal, y después transformar el resultado en un (número) binario. Operamos como en el sistema decimal: comenzamos a sumar desde la derecha, en nuestro ejemplo, 1 + 1 = 10, entonces escribimos 0 en la fila del resultado y llevamos 1 (este "1" se llama acarreo o arrastre). A continuación se suma el acarreo a la siguiente columna: 1 + 0 + 0 = 1, y seguimos hasta terminar todas la columnas (exactamente como en decimal).
Resta de números binarios
El algoritmo de la resta en sistema binario es el mismo que en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia.Las restas básicas 0 - 0, 1 - 0 y 1 - 1 son evidentes:
- 0 - 0 = 0
- 1 - 0 = 1
- 1 - 1 = 0
- 0 - 1 = 1 (se transforma en 10 - 1 = 1) (en sistema decimal equivale a 2 - 1 = 1)
- Ejemplos
10001 11011001 -01010 -10101011 —————— ————————— 00111 00101110
En sistema decimal sería: 17 - 10 = 7 y 217 - 171 = 46.
Para simplificar las restas y reducir la posibilidad de cometer errores hay varios métodos:
- Dividir los números largos en grupos. En el siguiente ejemplo, vemos cómo se divide una resta larga en tres restas cortas:
100110011101 1001 1001 1101 -010101110010 -0101 -0111 -0010 ————————————— = ————— ————— ————— 010000101011 0100 0010 1011
- Utilizando el complemento a dos (C2). La resta de dos números binarios puede obtenerse sumando al minuendo el «complemento a dos» del sustraendo.
- Ejemplo
1011011 1011011 -0101110 el C2 de 0101110 es 1010010 +1010010 ———————— ———————— 0101101 10101101
En el resultado nos sobra un bit, que se desborda por la izquierda. Pero, como el número resultante no puede ser más largo que el minuendo, el bit sobrante se desprecia.
Un último ejemplo: vamos a restar 219 - 23 = 196, directamente y utilizando el complemento a dos:
11011011 11011011 -00010111 el C2 de 00010111 es 11101001 +11101001 ————————— ————————— 11000100 111000100
Y, despreciando el bit que se desborda por la izquierda, llegamos al resultado correcto: 11000100 en binario, 196 en decimal.
- Utilizando el complemento a uno. La resta de dos números binarios puede obtenerse sumando al minuendo el complemento a uno del sustraendo y a su vez sumarle el bit que se desborda.
Producto de números binarios
La tabla de multiplicar para números binarios es la siguiente:· | 0 | 1 |
---|---|---|
0 | 0 | 0 |
1 | 0 | 1 |
Por ejemplo, multipliquemos 10110 por 1001:
10110 1001 ————————— 10110 00000 00000 10110 ————————— 11000110
En sistemas electrónicos, donde suelen usarse números mayores, se utiliza el método llamado algoritmo de Booth.
11101111 111011 __________ 11101111 11101111 00000000 11101111 11101111 11101111 ______________ 11011100010101
División de números binarios
La división en binario es similar a la decimal; la única diferencia es que a la hora de hacer las restas, dentro de la división, éstas deben ser realizadas en binario.- Ejemplo
100010010 |1101 —————— -0000 010101 ——————— 10001 -1101 ——————— 01000 - 0000 ——————— 10000 - 1101 ——————— 00011 - 0000 ——————— 01110 - 1101 ——————— 00001
No hay comentarios:
Publicar un comentario